Cool, | want to get started!

Great to have you on board! Chances are your op-
erating system already packages Chicken Scheme. Try
that first. Once you have it installed, you can try some
code with the Chicken Scheme interpreter csi.

$ csi

CHICKEN

(c)2008-2010 The Chicken Team

(c)2000-2007 Felix L. Winkelmann

Version 4.6.2

openbsd-unix-gnu-x86 [manyargs dload]
compiled 2010-10-18 on deepthought (OpenBSD)

#;1> (print "Welcome to Chicken Scheme!")
Welcome to Chicken Scheme!

#;2> (x 3 (+ 34) (/ 4 2))

42

#;3> ,q ; quits

If you aren’t familiar with Scheme yet, you
can check out the extensive list of books at
http://www.schemers.org/.

For Chicken Scheme specific documentation, try our
wiki. If you want to be kept up to date with devel-
opments in chicken you can read a weekly summary
called the Chicken Gazette.

For Chicken Scheme specific questions there is a
newbie-friendly mailing list chicken-users@nongnu.oryg.

The Chicken Team is also reachable on Freenode’s IRC,
channel #chicken.

Chicken Scheme on the net

Main site: http://www.call-cc.org/
Gazette: http://gazette.call-cc.org/
Code: http://code.call-cc.org/
Chat: #chicken at irc.freenode.org

Documentation: http://wiki.call-cc.org/
About Scheme: http://www.schemers.org/

The Chicken Logo has been made by Joshua Griffith. The
other images are drawn by Conrad Barski, used with his
kind permission. Also have a look at his book “Land of

Lisp” on http://www.landoflisp.com/
Last updated October 2010.

Chicken Scheme

A PRACTICAL AND PORTABLE SCHEME SYSTEM

http://www.call-cc.org/

What is Chicken Scheme?

Chicken is a robust and mature compiler for the pro-
gramming language Scheme. Chicken has been around
for over 10 years now, and has a growing group of ded-
icated users.

The system compiles to C, which allows it to gener-
ate fast, portable code. For easy development it also
includes a powerful interpreter.

Chicken is above all a practical system; there are liter-
ally hundreds of extension libraries (known as “eggs”)
available to help you get some real work done! There
are extensions for web development, concurrency and
parallelism, cryptography, scientific computing and
much, much more.

All of the major platforms are supported, including
GNU/Linux, the BSDs, MacOS X and Windows.

What is Scheme?

Scheme is a truly elegant and minimal programming
language which directly descends from Lisp, the second
oldest high level programming language still in use.
But don’t be fooled by that: It’s still as fresh today as
when it was first created!

It has very simple syntax so it is easy to learn. This also
makes it a very powerful tool: writing extensions to the
language can be done right from within the language,
allowing you to mold the language to better fit your
program’s domain. User-added functionality is treated
no different from “built-in” functionality.

Scheme is well-known as a functional programming
language, but it’s more accurately described as a multi-
paradigm language. Sure, you can program in a func-
tional style, but also in all flavors of object-oriented,
logical, distributed and even imperative styles. If to-
morrow a new cool style of programming is invented,
Schemers won’t need to switch languages. Instead,
they can just add it to their favorite language!

So, why Chicken and not
<insert Scheme here>7

Scheme is such a minimalist and easy to parse lan-
guage that there are thousands of implementations.
However, implementing a good Scheme is nontrivial.
Of the implementations that are not toys, we prefer
Chicken because it:

e sticks to the original minimalist spirit of Scheme

e produces fast code

e has a growing number of useful libraries for real-
world tasks

e integrates very easily with C
e has been actively maintained for more than 10 years

e has an energetic and enthusiastic community!

What is Chicken Scheme used for?

Scheme is a general purpose language, so your imagi-
nation is the limit! Here are just a few examples:

The ease of integrating C libraries and the rapid
turnaround offered by the interpreter make Chicken
a great prototyping platform.

Many of us automate our sysadmin tasks with Chicken.

It’s easy as pie to make web apps with Chicken’s web
server Spiffy and the web framework Awful. Our wiki
is a good example of this.

You can also generate static web pages using Hyde,
which powers our weekly “Gazette” newsletter.

You can analyze data with our great database support
and visualize it with GNU Octave or render graphs to
X11, SDL or OpenGL windows or PDF documents.

This very flyer was produced with SETEX, a ETEX
preprocessor which typesets Scheme code blocks with
syntax-highlighting. Written in Scheme, of course.

Show me some examples!

Hello world

How boring can it be?

(print "Hello, world!")
Obligatory factorial program

Slightly less boring than the hello world program:

(define fac
(lambda (n)
(if (= 1 0)
1
(+ 1 (fac (— n 1))))))

(define number
(string->number (car (command-line-arguments))))
(print "The factorial of " number " is " (fac number))

Integrating Scheme with C

(define logl0
(lambda (x)

(/ (log x) (log 10))))

;; The same using logl0 from C:
(foreign-declare "#include <math.h>")

(define log10-from-c
(foreign-lambdax double ((double x))
"double y;"
"y = logl0(x);"
"C_return(y);"))

;; Shorter versions:
(define (logl0 x) (/ (log x) (log 10)))
(define logl0-from-c

(foreign-lambda double "log10" double))

As you can see, calling C functions is quite easy. If you
have longer C code, you can also write your functions
in a separate C file and compile those against your
Chicken program. You can just call those functions
from Chicken.

